Original Articles
Differential protein expressions in breast cancer between drug sensitive tissues and drug resistant tissues
Abstract
Objective: To investigate the differential expression of the sensitive and resistant relative proteins in human breast cancer tissue.
Methods: A drug sensitive group and a drug resistant group for chemotherapy in patients with breast cancer were selected through neoadjuvant therapy. The differential protein expression in 2 groups was detected by proteomic techniques, and parts of differential proteins were identified by Western blotting.
Results: There were 13 differential proteins in the 2 groups, in which the expression of 3 proteins was upregulated and 10 down-regulated. Seven proteins were identified by Western blotting. The expressions of keratin type I cytoskeletal 19 (KIC19) and thymidine phosphorylase (TYPH) were up-regulated, and the expressions of heat shock protein 27 (HSP27), keratin type I cytoskeletal 9 (KIC9), collagen alpha-2(VI) (CO6A2), vimentin (VIME), and actin cytoplasmic 1 (ACTB) were down-regulated in the drug resistant group. There were significant differences between these 2 groups (P<0.01).
Conclusions: The expressions of KIC19 and TYPH may be correlated with drug resistance in patients with breast cancer, and HSP27, KIC9, CO6A2, VIME, and ACTB may be correlated with drug sensitivity.
Methods: A drug sensitive group and a drug resistant group for chemotherapy in patients with breast cancer were selected through neoadjuvant therapy. The differential protein expression in 2 groups was detected by proteomic techniques, and parts of differential proteins were identified by Western blotting.
Results: There were 13 differential proteins in the 2 groups, in which the expression of 3 proteins was upregulated and 10 down-regulated. Seven proteins were identified by Western blotting. The expressions of keratin type I cytoskeletal 19 (KIC19) and thymidine phosphorylase (TYPH) were up-regulated, and the expressions of heat shock protein 27 (HSP27), keratin type I cytoskeletal 9 (KIC9), collagen alpha-2(VI) (CO6A2), vimentin (VIME), and actin cytoplasmic 1 (ACTB) were down-regulated in the drug resistant group. There were significant differences between these 2 groups (P<0.01).
Conclusions: The expressions of KIC19 and TYPH may be correlated with drug resistance in patients with breast cancer, and HSP27, KIC9, CO6A2, VIME, and ACTB may be correlated with drug sensitivity.